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SUMMAR¥

This monograph summarizes the gas dynamics of high-speed guns,
utilizing a gas of low molecular weight at high temperature. Theory
and test results are presented. The reader Is assumed to be an advanced
student in engineering. The fundamental ideas and equations are fully
developed.
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NOTATION

AA1 ,Ai cross-sectional area o• barrel

AAc cross-sectional area of chamber

a sound speed

aRe sound speed of the gas at xo

b covolume

DD 1  diameter of barrel

DO diameter of chamber

f oovolume in semi-empirical entropio equation (66-1)

9 internal energy of a system in general

F frictional force per unit mass at wall on gas layer due to boundary layer

G mass of propellant gas in a PP Gun, or mass of gas in barrel of constant
base pressure gun

0mass of gas in back chamber of a two-stage gun

H Lagrangian coordinate defined as fp dx

h enthalpy

L barrel length

m molecular weight

M projectile mass

mass of piston in pump tube of two-stage gun

n number of moles, or exponent in empirically fitted isentropic equation

PP Gun preburned propellant gun

PPIO Gun preburned propellant gun with an ideal gas propellant

p pressure

spacial average pressure

Q b~eat transfer per unit mass to gas layer

ix.
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UIII Velo Nab M UUIIbLtUJ

R gas constant for a mole of a particular gas (equals R/m)

a entropy

t time coordinate

T temperature

U internal energy of a system independent of motion, gravity, capillarity,

electricity, end magnetism

u velocity

uo velocity of a projectile propelled by a constant pressure (pc)

U p projectile velocity

AUP increase of projectile velocity due to ohmmbrage

AUp • increase of projectile velocity due to infinite chambrage

Up 1st velocity of projectile when first wave reflected from breech reaches it

Uesc escape velocity

u projectile velocity with boundary layer and friction effects
Pf

u pf.0 projectile velocity without boundary layer and friction effects

u PIprojectile vwlocity when there is gas in front of the projectile

up projectile velocity when there is no gas in front of the projectile

V projectile velocity at muzzle

v specific volume

x distance coordinate

xp positioil of projectile

xo length of chamber in PP gun

g0e the x coordinate of characteristic line at t = 0 in the gas in a

constant base pressure gun

value of acceleration of gas and projectile in the constant base pressure
gun equal to P0A,/M



traction o0 additional gas particles, used in thermai equation:
p = p(i + Z)RT

M constant in van der Waals equation of state which accounts for the
attractive forces between molecules

parameter which is exponent of semi-empirical entropic equation of state

(Equation (66-1))

y ratio of specific heats

Sdefined as (up + ap - Co0)/Qo- (see Equation (24-3)), used in p-u relation

for chambered xo = 0 , PPIG Gun

K parameter which occurs in semi-empirical equaticii (Equation (66-1))

the x coordinate on a characteristic line in the gas of a constant base

pressure gun

p density

SRiemann Function defined from do-r (dp/ap),

7' the t coordinate on a characteristic line in the gas of a constant base
pressure gun

Subscripts

o denotes position in chamber at entrance to transition section

f denotes gas directly in front of projectile

g denotes gas directly behind shook in barrel

i denotes position in barrel at exit of transition section

p refers to gas directly behind the projectile or to the projectile

0 refers to initial state of gas in chamber of PP gun, or to conditions

behind projectile in a constant base pressure gun

00 refers to position on characteristic at t = 0 in gas of constant base

pressure gun

1 denotes initial state of gas in barrel in front of projectile or state
of gas in front of shock

2 denotes state of gas beaind shook

xi



denotes sonic conditions

**denotes time when gas becomes sonic at the x 0 position in a constant

base pressure gun

Other Symbols

D denotes time rate of change of a quantity when traveling with the velocity

Dt of a disturbance (u i a); thus

D -a 'a•

E 7 u± .

Dt t Zx

d denotes time rate of change of a quantity when traveling with the velocity

dt of a gas particle (u); thus

d
dt +t ux

Bars over quantities denote nondimensional quantities; defined in text.

Ideal gas - a gas described by the equations pv RT and pvy constant,

xii.



PART I. INTRODUCTORY REMARKS

Section 1

Purpose of Monograph

In the year 1945, after 700 years of shooting guns, the maximum velocity of
projectiles was 10,000 ft/sec. However, within the past 20 years projectile
velocities obtained from guns have risen spectacularly to a value of 37,060 ft/sec.*
This surprisingly large gain in velocity during a relatively short period of time
was the result of a vigorous effort pursued to make possible the study of hypervelocity
phenomena in the laboratory. The increase in projectile velocity was a reflection of
the increase in our knowledge of the interior ballistics process; the increase in
knowledge still continues, and, coupled with our advancing technology, gives promise
of effecting in the next 20 years equally large projectile velocity increases.
Projectile velocities of 60,000 ft/sec by 1985 seem not only possible but probable.

What is the extent of our knowledge of interior ballistics which made possible the
startlingly large gain in projectile velocity? This monograph will address itself to
answering this query. It will summarize our understanding of the gas dynamics of
high-speed guns, those firing projectiles above 10,000 ft/sec. As is now well
known, in order to achieve high speeds, a gun must use a hot "light gas" as a
propellant, that is, a gas of low molecular weight at high temperature. This require-
ment for a hot light gas propellant becomes obvious from the interior ballistics theory
as unfolded below,

The reader is assumed not to be an expert in the field of interior ballistics, but
is assumed to be a graduate student in engineering. Consequently, the fundamental
ideas and equations are rather fully presented; thus, included in some detail Jn the
main text and appendices are explanations of the method of characteristics. Included
also are methods for calculating gun performance which have now become unnecessary
because of the use of electronic computing machines; nevertheless, these methods aid
in the understanding of the interior ballistics. It is hoped that the more knowledge-
able reader will adjust to the inclusion of much elementary material and to the
repetitious style used for clarity.

Section 2

The Basic Requirements for a High-Speed Gun

The basic factors determining the speed of a projectile propelled from a gun may be
simply obtained by applying Newton's force equation to the projectile, Schematically,
the projectile, during its travel in the gun barrel, may be represented as in the sketch
on the following page.

* NASA, Ames Research Center (April 1965).
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Barrel of cross-

_sectional area4 AO

P
P

Sx P 
L

The projectile mass is denoted by M , the length of barrel by L , and the cross-
sectional area of the barrel by A . The propellant pressure at the back end of the
projectile is denoted by the letter pp . At any instant of time Newton's Law

applied to the projectile yieldsm

Mt ul = - pA (2-1)',M MU= - p
dt dxp

where u is the instantaneous projectile velocity and x is the corresponding

distance ltraveled by the projectile.

If Equation (2-1) is integrated, it becomes

MVI/2 A LJ Pdzx (2-2)

where V is the muzzle velocity of the projectile. With V , the spatial average

prnpelling pressure, defined as

I •L
r pp dxp (2-3)

Iii, projectile velocity becomes

7W1 V V^20 A LX (2-4)

This result, Equatio.4 (2-4), indicates essentially the factors upon which the
projectile velocity depends, To increase the projectile velocity, one must increase
the value of the quantities under the square root sign. Thus, the one step in
achieving a higher projectile velocity is to change the sizes of the projectile and
barrel so as to increase the value of AL/M ; this requires, for a given cross-
sectional area A of the barrel, that M be made smaller and L larger.
(Note that if a gun is made larger by geometrically scaling it, AL/M remains the
same.) However, practicality limits these changes, for M may be made only so
small for a given barrel diameter and L may be made only so large (as frictional

and gas dynamic effects lower ý substantially if the barrel is too long - see below).

* For purposes of this discussion, the air pressure in front of the projectile and the frictional

force acting on the projectile have been assumed negligible.
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Unfortunately, after having made AL/M as large as practical, it is found with a
conventional propellant gun that the projectile velocity is still much below that

desired.

From the above considerations one is led to the conclusion that after AL/M is
made as large as practical, the only method of achieving high velocity is to increase

the average propelling pressure P .

The reason for the difficulty in obtaining a high average pressure in the case of a
gun using a conventional powder propellant is illustrated by the following sketch.

P

X

Here the pressure behind the projectile in the conventional gun is plotted as a

function of its travel. The rise in pressure from zero to the peak pressure pM
results from the burning of the propellant; as will bb shown below, the rapid pressure

decrease thereafter results mainly from the propellant inertia as the propellant gas
accelerates to push the projectile, It is evident from the sketch that the average
pressure F is considerably below the peak pressure pM for the conventional
propellant.

Of course, increasing the amount of propellant in the chamber would increase pm
and thus 6 , but the strength of the gun limits the value of pm . By using the
maximum amount of conventional gunpowder which may be contained even by specially
strengthened guns, velocities of about 12,000 ft/sec have been reached with low mass
projectiles. This velocity is about the maximum achievable with the conventional
propellant gun system.

theAs indicated in the preceding paragraph, there is obviously a practical limit to
the strength of the parts of a gun. The main parts of a gun system are (a) the
projectile, (b) the barrel, and (c) the gun chamber or chambers. The values of
stresses experienced by each of these components is dependent on the pressure pulse

to which it is subjected. (The rato of pressure application, as well rs the value
of the peak pressure, determines the stresbes experienced,) In riactice, the chambers

and barrels of guns may be designed to withstand static pressures up to about
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130,000 lb/in 2 without being permanently deformed; a rugged projectile, similarly,
may be designed to withstand 130,000 lb/in', whereas a fragile projectile may only
withstand, perhaps, 250,000 lb/in Parts which are expendable may be designed to
deform but not rupture at transient preRtAIMR em high aR 1,000, 0o lbh/in 2 .

This discussion points to the main requirement in achieving a high projectile
velocity after having mace AI/M as large as possible: the requirement of obtaining
a high average pressure 0 behind a projectile, while at the same time limiting the
pressure rise in all parts of the gun system so as not to cause unacceptable damage
to the parts.

Section 3

The Velocity Attainable by Use of a

Constant Base Pressure Propellant

For a gun of given geometry propelling a given projectile, the quantities A , L
and M are fixed. For this gun system there is a maximum allowable pressure p 0
which the projectile can sustain, Under idealized circumstances one could hope that
'he pressure of the propellant propelling the projectile would be constant and equalto p, during the entire projectile travel. (Thus, po=P = a constant,) Thissituation is shown in the following sketch.

top drn th niepoetietae. (hs ,p
0 aconstan, ) Thi

P

L -- _ __

* Instead of the streas capability of the projectile, one may discuss the acceleration
capability, The latter description may, be more pertinent if the projectile carries "a"
limited payloads.
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Such an imagined propellant, whose propelling pressure would be maintained at a
uuituMant vaiue, is Known as a "constant base pressure propellant" or "constant pressure
propellant". In this case the projectile velocity attained would be the maximum
attainable velocity or the given gun system. Thin velocity, denoted as u 0 , is
easily calculated by applying Newton's Law to the projectile. Thuso

du dup
= Mu pA =PA (3-1)

dt = dxp

which, when integrated along the barrel length, yields

2PEAL
u0 = - (3-2)

M

The first calculation one should make for a given gun when attempting to assess its
possibilities of attaining high velocity is the calculetion of uo : for uo is the

highest velocity attainable.

If, for example, a sphere is chosen as the projectile, u 0 becomes

= 2po(7D2/4)L SID)0 (L` )3
M T7DI/6)Pp D

where pp is the density of the projectile. Thus, for a very light projectile such

as a nylon sphere (pp = 1.2 g/om3 ) in a gun with a long barrel (L/D = 300), with
PO 0  100,000 lb/in 2 (a relatively high pressure), Equation (3-3) yields uo = 75,000
ft/seo.

•br the same gun with p 0 = 30,000 lb/in2 , uo is calculated to be 42,00n ft/sec.

It becomes obvious that, even in the idealized case of a constant propelling
pressure, one needs for high velocity extremely long guns, high pressures, and low
projectile masses; these needs are even more pronounced in the actual case where
the average propelling pressure is much below the peak pressure, Thus, the quest for'
a high velocity gun becomes a quest for a propellant which will maintain the propelling
pressure at a high value.

* Here, for the purpose of obtaining the maximum attainable velocity, the friction on the
projectile and air pressure in front of it are assumed negligible.
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Section 4

Description of the Preburned Propellant Gun

In this section will be considered the gun system in which the propellant has been
completely reacted before the projectile is allowed to move. This gun system is termed
a "Preburned Propellant" Gun and designated as a PP Gun. The gun is visualized as
consisting of a chamber of diameter D0 joined by means of a transition section to a
barrel of diameter D, , The projectile is positioned initially so that its back end
is at the beginning of the barrel section. Immediately before the projectile begins
to move, the reacted propellant produces in the chamber a gas at an initial and peak

pressure p0  and sound speed a 0  temperature T0 , etc. (See the following sketch.)

Gradual or Abrupt
Reacted Propellant Transition Section

TT
,. - - Cihamber

When the chamber diameter is greater than the barrel diameter (D. /f 1 > 1) the gun
is described as a "chambered" gun, or a gun with "chambrage", When the chamber
diameter is equal to that at the barrel, the gun is described as "having no chambrage",
or as a "constant diameter gun".

In practice a preburned propellant gun may employ a diaphragm to separate the
propellant in the chamber from'the projectile; this diaphragm is ruptured when the

propellant has completed its reaction, Another possibility is the use of a "shear
disc" around the projectile ituelf which shears when the reaction has been completed.
One type of a preburned propellant gun is that which uses as a propellant a non-
reacting gas (such as compressed helium).

In a preburned propellant gun the projectile is restricted from movement until the
pressure has reached a peak value; it will be shown below that, after the projectile
is released, the pressure behind the projectile decreases as the projectile increases
in velocity and moves along the barrel. (See the following sketch.)



p up
pX P

o p

0I

xp .. Up ,.-0

The attainment of high velocity in this case requires that the pressure decrease be
minimized; for maximum velocity one would wish for the oonstant pressure propellant
previously mentioned which would maintain its pressure at the peak value pc behind
the projectile durang the projectile's entire travel.,

If the pressure behind the projectile were maintained at the initial peak value
Do , the velocity in this idealized case is as calculated in Equation (3-2),

u0 = 2pAL/M

In practice a velocity equal to the velocity u0 for the preburned propellant gun is
unattainable, this is a consequence of the fact that in such a gun, as will be shown
below, the pressure behind the projectile inevitably must drop as the projectile
velocity increases; unfortunately, the greater the projectile velocity, the greater
will be the drop. m

Section 5

A 4ualitative Description of the Pressure Disturbances
Occurring During Firing of a Preburned Propellant Gun

When the projectile in a gun begins to move, it momentarily leaves a slightly
evacuated or a lower pressure space behind it. The layer* of gas that was initially
behind the projectile quickly movws (an infinitessimal amount) toward the projectile

The gas is imagined to be composed of thin layers or discs of gas which are perpendicular
to the axis of the gun.



IlLU Ljii evacuatLd space. secause tnere lE now more space available to this first
gas layer, its pressure drops. The layer of gas immediately behind the first layer of
gas then, likewise, finds itself next to a slightly evacuated space (as a resuilt of
the first layer's motion) and so it likewise moves into the evacuated space, Similarly,
each successive layer in turn moves into the space in front of it which has been Just
previously evacuated, This progression of successive movement is a disturbance in the

gas which proceeds at the speed of sound, Since this disturbance is characterized by
the fact that it decreases the pressure and density of the gas through which it passes,
it is termed a rarefaction disturbance. (Other names for the disturbance are impulse,
wave, wavelet, or pulse; the adjective "acoustic" o, "sound" is often put in front of

these terms.)

It is seen that the pressure drop aRcompanyitig the disturbance results from the fact
that the projectile has accelerated and in turn each layer of gas haR been accelerated.
The quantitative value for this pressure drop from the accelerating projectile motion
is given below, Qualitatively, the more quickly each la.er of gas muves into its
neighbor's evacuated space, the less is the pressure drop and the better able is the
gas to push on the propellant, Thus, a good propellant gas would be one of low
"inertia" in this process of successive movement, t

During the entire movement of the projectile in the barrel, the projectile continues
to produce these rarefactions which travel toward the breech at the local velocity
of sound of the propellant gas, Consequently, the pressure of each layer of the gas
behind the projectile drops continuously as the projectile accelerates toward the

muzzle: in particular, the pressure of the gas layer directly behind the projectile
drops the most, since all of the rarefactions first travel through this gas layer,

In a gun with no chambrage, i.e., a constant cross-sectional area gun, each layer
of gas similarly moves into the space vacated by its front neighbor until the layer
of gas next to the breech begins to move forward. The breech layer then begins to
move into the space vacated by its neighbor, but there is no neighbor behind it to
fill up the space it is vacating; therefore, it is retarded in its motion and by so
doing leaves the space ahead into.which it is moving somewhat evacuated. The neighbor
in front of the breech layer feels this slightly evacuated space behind it and so it
is retarded in its forward motion; this retardation of each neighbor in turn proceeds
toward the projectile, resulting in a progression of a rarefaction disturbance which
travels from the breech end toward the projectile end.

$ It is shown below that the quantitative expression for the gas inertia is "ap"; for an ideal
igas ap is Inversely proportional to the initial sound speed for a given initial pressure
Equation (11-3).
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M- ... ... ,=CC, .. cli tl.Uii t•tj 6 Utiuu& end, is termea a "retlectec" rare-
faction and is a result of the fact that there is a breech end. All of the rarefactiowi
produced by the projectile reflect from the breech in this manner; they travel toward
the projectile, transmitting the information to the gas and the projectile that there
is a limited quantity of gas to fill the evacuated spaces. These reflected rarefactiotr;
lower the pressure of the gas through which they travel further than if there had been
no breech. In particular, when these reflected rarefactions reach the back end of the
projectile, they lower the pressure behind the projectile; consequently, the projectile,
velocity is not as large as it would have been if these reflected rarefactions had not
reached the projectile.

A more complex phenomenon occurs in a gun with chambrage. In such a gun, as a
rarefaction traveling in the barrel toward the breech reaches the increasing area
section, the evacuated space is filled by gas flowing from a larger volume layer;
consequently, the pressure in the space is raised to higher value than if the gas had
moved from the constant diameter smaller bore layer. In turn, each layer of gas in
the transition section leaps into the space evacuated by the layer in front of it and
each tends to raise the pressure a little more than if they had been gas layers of the

same diameter as the bore. In effect, therefore, the rarefaction impulses which are
produced from the back of the moving projectile when they come to the change of area

of the transition section are partially reflected as compression disturbances: these

compression impulses travel toward the projectile. Upon reaching the projectile they
raise the pressure behind the projectile, and therefore the projectile velocity, to a
value above that of a gun with no chambrage. Thus, the rarefactions produced by the
projectile in a chambered gun upon reaching the change of area section are 1,artially

\. *if".cted as compresion impulses and partially transmitted as rarefactions. The
S- trbs smitted rarefactions continue their travel toward the breech still as rnrefactiuis;
,at the breech they are reflected again as rarefactions and, at the transition section

of.area decrease, a portion is reflected as a rarefaction and the remaining portion
continues its travel toward the projectile as a rarefaction. This sequence of events
continues as the projectile moves along the barrel.

In summary, changes in pressure of the gas behind the projectile occurring in a
preburned propellant gun are these: (1) There is a drop in pressure from accelerating
projectile motion which is present during the entire projectile travol, -(2) There is
a drop in pressure caused.by rarefactions reflecting from the breech which are present
in the latter stages of the projectile motion when these reflections reach the
projectile. (3) There is a rise in pressure from the compressions reflected from the
change in area section which is present during the entire projectile motion.

SRarefactions reflected Rarefactions Fromfrom breech accelerating projectile

.............. Compressions reflected
f • from transition section
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Section 6

The Derivation of the Equations for
Disturbances Traveling in the GasW

It is apparent from the discussion in Section 5 that changes in the gas are brought
about by the acoustic disturbances which travel in both directions in the propellant

gas. Although only infinitesimal chai.ges result from the passage of each disturbance,
finite changes result from the passage of a multitude of these disturbances. Let the
changes wrought by a single infinitesimal disturbance traveling with velocity D into
a differential layer of gas in a constant diameter tube be examined. Let this layer
before the passage of the disturbance have a pressure p , a density p , and gas
velocity u ; after the disturbance passes the layer, these quantities are increased
by differential amounts as shown in the following sketch.

disturbanc.e D
p + dpI "/t.Y pXz P P(, t
u + du IV u,•,)u = u (x,t t t t

Gas Layer

+ du 't t + dt

As indicated in the sketch, the layer of &%s to be examined is traversed by the

disturbance in time dt . Thus, it is initially (D-u)dt long, and after passage
of the disturbance it is (D-u-du)dt long, as may be discerned from the next sketch.

D

p + dp - p =t

Ddt - d-L,°+ .AL, ,.du--t D

p + dp :FIP t=t+d

* See Appendix B for an alternate derivation.



The mass of gas is therefore expressible in terms of the gas layer's length before
or after traversal by the disturbance wave; hence

A(D - u)pdt = A(D - u - du)dt (p + dp) (6-1)

where A is the cross-sectional area of the tube.

During the entire time of passage of the disturbance wave a pressure of value
p + dp acts on the left end of the layer, while, a pressure of value p acts in the
opposite direction on' the right end of the layer. Thus, the net pressure acting on
the layer is dp . The acceleration of the layer is the velocity change du experienced
by it divided by the elapsed time dt . Thus, Newton's Law applied to the layer is

du

Adp A=o(D - u)dt d- (6-2)

net force mass acceleration

If du is eliminated from Equations (6-1) and (6-2), one obtains

(V U) 2 = dp.

(- • (6-3)
dp

The assumption is here made that the infinitesimal changes which occur during the
passage of t!e disturbance are isentrupic (that is, reversible and adiabatic); thus,
the right hand side of Equation (6-3) is the square of the sound speed of the gas, a 2,

Equation (6-3) becomes

D-u= a
or

D=u+a (6-4)

This disturbance is thus found to travel with the speed of sound relative to the gas.
Equations (6-2) and (6-4) may be combined to give

dp = aodu . (6-5)

This is the fundamental expression for the pressure change across a "u + a"

disturbance wave.

In a similar manner a disturbance traveling upstream could be analyzed. Such a
disturbance is shown in the following sketch.

D

p p+dp
u (x,t)--- U -u + du

p p+dd=P



12

dp s-o~xu

across a "u - a" disturbance.

By examining the above equations one may determine the significant propellant gas
property which governs the magnitude of the pressure change due to the passage of a
disturbance in a constant diameter tube, Equations (6-5) and (6-6) may be rewritten
as

dp = (asdt) (du/dt) } (6-7)
dp = -(apdt) (du/dt)

for the pressure change across a downstream and upstream disturbance wave, respectively.
The quantity "ad' , the gas acoustic impedance or acoustic inertia, is the mass per
unit time traversed by a disturbance wave: it is thus properly identified as the inertia
of the propellant gas.

For small ap , the pressure change will be small to effect a given velocity change;

for large ap , the pressure change must be large to effect a given velocity change.
Thus, the acoustic inertia ap of the gas is seen to be the fundamental gas property
which determines the magnitude of pressure changes required to produce given velocity
changes. It will be discussed further in Section 9.

For convenience, Equations (6-5) and (6-6) are usually rewritten in terms of changes
which occur when traveling with or along the disturbance rather than those which occur
when traveling across the disturbance, Hence, since the change across a "u + a"
disturbance equals the change along a "u - a" disturbance, and vice versa, Equations
(6-5) and (6-6) become

dp + apdu - 0 (6-8)

along a Iu + a" disturbance path,

dp - apdu = 0 (6-9)

along a "u - a" disturbance path.

These equations are known as the ohareml.eristic equations; they permit a numerical
solution to the interior ballistics qro•'•ý,• in the case of a gas flowing isentropioally
in a constant diameter tube. This j, : 4 i.- possible because the infinitesimal
changes described in Equations (6-81 ., -. , result in the finite changes which
occur in the gas.
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Section 7

Summary of Equations Applicable to an Isentropic

Gas Expansion in a Constant Cross-Sectional Area Tube

The meaning of the equations in Section 6, which apply to a gas which expands in a
constant crosB-sectional area tube is discussed in Appendix C; the equations are
derived in a more rigorous fashion in Appendix B. It is assumed there that the gas
expansion is one-dimensional. Further, it is assumed that the flow is adiabatic and
reversible (isentropic), that is, that friction and heat-transfer effects within the
gas are negligible. (The irreversible effects are discussed in Part VIII.) These

assumptions have been shown to be a good approximation" 2 and permit a relatively
simple solution to the interior ballistics problem.

In Appendix B the one-dimensional momentum and continuity equations applied to a
layer of gas isentropically expanding in a constant diameter tube are transformed into

the characteristic equations. These equations are there written in terms of the
"Riemann Function" a , defined as

do, w (dp/ap), ' (7-1)

They are

du + do- = 0 (7-2)

along the path of a characteristic line of slope dx/dt = u + a and

du -dr = 0 (7-3)

along the path of a characteristic line of slope dx/dt = u - a . The u + a and
u - a characteristic lines are thus the paths of disturbances. These equations are
the same as derived in the previous section. For consciseness they may be written
as (see Appendices A and C):

D
t(u 1cr) = 0Ut

Equations (7-2) and (7-3) may be integrated to yield

u + o is constant (7-4)

along the path of a disturbance traveling with speed u + a = dx/dt and

u - a- is constant (7-5)

along the path of a disturbance traveling with speed u - a = dx/dt.



'rne two sets of characteristic lines (disturbances) may be drawn in the xt-plane,
As explained in Appendix C, the u ± a characteristic lines have a slope equal to
u ± a in this plane. Alnne each u ±a characteristic line Wie quantity u ± o-
remains constant.

u+0
U+ a

DISTURBANCE 

d1'r
-u DISTURBANCE Cedt U+

t-

The characteristic Equations (7-4) and (7-5) may be applied to the gas expansion in
any constant diameter tube (e.g., in the gun barrel or in the gun chamber) as
demonstrated in the sections below. In particular, these equations, together with
the gas equation of state, may be directly applied to a constant diameter gun,

in general, the solution of these eQUations is effected numerically by progressively
solving for conditions at the intersections of the u + a with u - a characteristics
(see Appendix C and Appendix E), In special oases a numerical solution is unnecessary
and the characteristic equations may be solved analytically.4

Section 8

The Characteristic Equations for the Effectively
Infinite Length Chamber, D.D = 1, PP Gun

A preburned propellant gun having a constant diameter chamber joined to a barrel of
the same diameter is considered, Before the projectile has begun to move the gun
appears as in the following sketch,

Chamber Barrel

D Preburned 00 P,
0 Propellant PO p
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Equation Do/D= 1 Equations (7-3) and (7-4) may be applied to such a gun,

When the projectile motion begins, a rarefaction disturbance is sent back with
the speed of sound (ao) into the gas behind it. The path of this disturbance is
shown as the line A-B-C in the following sketch.*

L

XP

Dw

xo-- ,

This disturbance reaches the back end at C and reflects, The reflected disturbance
is shown as C-D-E in the sketch, An explained in Appendix D, the region A-C-E-A
is known as a "simple wave" region. Becagse no reflected disturbance reaches this
region, the entire region is described by the equation

du + do, = 0

or equivalently

du + dp/ao 0 (8-i)

This becomes upon integration

u + fdp/sp 0 (8-2)

or in terms of o7,

u +- o •o p-3)

where u is taken to be equal to zero at p: p0  and o '

A gun whose chamber length x0 is sufficiently long so that the first reflected
wave C-D-E does not reach the projectile before it reaches the end of the barrel is

termed as "infinite chamber length gun" or an "effectively infinite chamber length gun",

* Usually in an x-t plot, as in the sketch, the projectile path is drawn as a single line
which actually represents the path of the back end of the projectile.
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a gun is unaffected by the presence of the back or breech end; the projectile

performance is the same as it would be In a gun whose chamber length were truly

infinite. Thus, the gas behind the projectile In an Infinite chamber length gun is

characterized by Equations (8-1). (8-2), and (8-3).

Section 9

Role of the Acoustic Inertia in the

Do/D 1 = 1, xo = 0, PP Gun

In Section 6 it was noted that, for the expansion of a gas in a tube, the acoustic

impedance ap plays the role of the inertia of the gas, For the x0 - 00, Do/D, = 1 ,

PP Gun the acoustic impedance may be directly related to the pressure drop behind the

projectile.

Thus, Equation (8-1) describes any part of the gas behind the projectile in an

x0 = 00, Do/D 1 = 1 gun; it may be rewritten as

dp = -*du (-'

(This is In contrast to the situation in a PP gun which has Do/D 1 = I and

X0 not equal to w, for then Equation (9-1) only applies to "u + a" disturbances.)

From Equation (9-1) it is apparent that, when the velocity increases behind the

projectile, the pressure decreases. Moreover, Equation (9-1) indicates that the drop

in pressure for a given velocity increase is directly proportional to aP . Thus,

in this unsteady expansion process the measure of the propelling gas inertia is ap

the drop in the pressure of the propelling gas (and, in particular, of the gas

directly behind the projectile) is a direct result of the gas inertia ap (and an

inevitable result unless mp can be made zero).

Equation (9-1) may be integrated to yield for the DO/D 1 *:1 , x0 = co, PP gun the
velocity of the gas at any point in the flow

DO dp

u =I - . (9-2)
pap

It is seen that the velocity of the gas expanding from rest at initial pressure p0
In a DO/D , x0 = (m PP gun depends only on the acoustic impedance as a function
of pressure for the isentrope,

For a DO/D1 1, xo= co, PP gun the relationship between ap and p determines the
entire propellant performance,
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The Equation for the Projectile

By application of Newton's Law to the projectile one obtains

du =
M dt pp (10-i)

where pV is the pressure directly behind the projectile ind u is the velocity of
the projectile. The barrel is here assumed evacuated and the ctional forces on the
projectile ore assumed negligible,

Section 1U

The Equations for an Ideal Propellant Woa in a
PP'Gun With Do/Dt = 1, x0 = O

The words "PPIG Gun" designating "Preburned Propellant Ideal Gas (kn" refer to a
PP Gun with an ideal gas propellant.

An ideal (or perfect) gas is here defined by the following thermal and isentropic

equations. (See Appendix J)

p =pt (11-i)

p = pp/po 0O (11-2)

where the subscript "0" indicates the Initial rest state from which the gas
expands, The acoustic impedance beoumes, for the isentrope

apa = Do 
/JFT ~ ~ ~ P 0 (.6 , ' Yo (

The souýd velocity may be expressed for the ideal gas ius

a -I/ VR 21 l/T (11-4)
p m

and the Riomann function is calculated to be

2' - a (li-B)
a -1

where o, is taken to be 7ero at a 0


